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Abstract—For effective graph visualization, in addition to the optimization of computational measures such as total ink and edge
crossing, user experiments to quantify task performance are often performed. However, in a sophisticated graph drawing involving
multiple visual elements, the elements can affect users’ performance either positively or negatively. The group-in-a-box (GIB) layout
is an efficient graph drawing method designed to visualize the group structure of graphs. It consists of multiple elements such as a
node-link diagram and boxes that explicitly illustrate the group structure. In this study, using GIB as an example, we measured the
performance and eye movements of participants performing the task of identifying the group with the largest internal edges. We
examined the effect of visualization elements on task performance while controlling for the density of internal edges and box size.
The results revealed that the density of internal edges and box size in a GIB layout significantly affects the accuracy of the task, and
the presence and absence of boxes caused fluctuations in accuracy. Usage of sophisticated visualizations can be beneficial if used
successfully, but it can also lead to unexpected misjudges.

Index Terms—Group-in-a-box layout, eye tracking, user study

1 Introduction

As data becomes available on a large scale and in a wide va-
riety of forms, various graph-drawing layouts, edge-bundling
techniques, and sophisticated visualization methods have been
proposed. Easily seen graphs have been generated by optimiz-
ing computational measures such as total ink, edge crossing,
and developer-defined energy values. Visualizations with im-
proved computational measures have a superior appearance;
however it is unclear whether users can easily retrieve informa-
tion from these visualizations. Consequently, user experiments
and subjective evaluation have been conducted to evaluate the
effectiveness of visualizations. In user experiments, visualiza-
tions are evaluated by measuring user task performance, in-
cluding correct answer rate and completion time for tasks that
involve reading encoded data. Visualization is in essence me-
diation between humans and computers. User experiments for
evaluating visualization go beyond simply analyzing the differ-
ence in performance for multiple layout; they incorporate ex-
perimental approaches from the fields of visual cognition and
cognitive psychology. The field of visualization currently faces
several challenges, including determining which visual elements
have crucial effects on task performance, and determining the
just noticeable difference of a particular visual attribute.

Visualization is generally not considered a well-controlled
or simple expression in a visual cognitive sense, but rather a
combination of multiple visual elements such as colors, points,
bars, and lines. Consequently, multiple visual elements pre-
sented on a screen can affect performance either positively or
negatively in a task that involves extracting information from
a visualization. Although visualization should be as simple as
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possible, excessive visual elements may be used unintentionally
in a real-world visualization setting or visualization system.

In this study, we examine visualizations combining several
visual elements that can be used in an actual visualization sys-
tem, and evaluate whether the visual elements have an effect
on user task performance, and what the size of that effect is.
The group-in-a-box (GIB) layout is an efficient graph drawing
method designed to visualize the group structure of graphs. It
consists of multiple elements, including a node-link diagram
and boxes that illustrate the group structure explicitly. In
this study, using GIB as an example, we measured the task
performance and eye movements of participants performing a
task involving determining which group has the largest internal
edges. Here internal edges signify the edges connecting nodes
in the same group (i.e., the edges in a given box). In a task
involving extracting information from a graph with a group
structure, the visual elements of the graph can determine the
accuracy of extraction. However, other visual elements and in-
teraction effect of visual attributes may also have a significant
effect on task performances. Therefore, we examined the effect
of visualization elements on task performance while controlling
for the density of internal edges and box size.

Specifically, to analyze the effect of boxes and other visual
attributes in the task of extracting the internal edge features of
a GIB layout, the following three conditions were used: 1) only
boxes are displayed, 2) only nodes and edges are displayed, and
3) boxes, nodes, and edges are displayed. By analyzing the dif-
ference in task performance between the three conditions, we
were able to quantitatively evaluate the effects of boxes and
other visual attributes. Twenty-seven participants performed
three tasks for two GIB layouts, TR-GIB and FD-GIB. In addi-
tion to measuring task accuracy, we also obtained eye-tracking
data to determine where the participants’ gaze was focused
when they performed the tasks. Our results revealed that the
density of internal edges and box size in a GIB layout greatly
affected the accuracy of the task, and the presence or absence
of boxes caused fluctuations in accuracy.

The key contributions of this study are as follows:

• User experiments to evaluate the effect of visual elements
in a GIB layout on task performance

• Quantification of the effect of visual elements on task ac-
curacy in a GIB layout



2 Related work

In this section, we discuss related research in which user exper-
iments are conducted to evaluate visual design, the analysis of
exploration behavior is performed using eye-tracking data, and
the GIB layout is examined.

2.1 Evaluation of visual design through user experiments

In the fields of cognitive neuroscience, visual cognition and
psychophysics, psychophysiological experiments are commonly
conducted to determine the types of primitive visual stimuli
that have an effect on human cognition; this information serves
to inform human visual characteristics. Psychophysiological
experiments and user experiments in the field of visualization
have also been conducted [24, 22, 8, 20, 15]. Szafir performed a
qualitative analysis of color difference perceptions in common
visualizations, discovering that perceived color differences vary
inversely with size and that colors are more discriminable on
elongated bars and lines than on points. Additionally, con-
trolled user studies have also been conducted to evaluate vi-
sual comparison [15], color assignment in multiclass scatter-
plots [24], color map data [22, 20], and distribution data [8]..

Research on evaluating visualizations can lead not only to
improved visualization design, but also to more thorough un-
derstanding of human high-order visual processing. In this
study, we evaluated the effect of complex elements in a graph
visualization from a different perspective from the related stud-
ies described above. In addition to performing a quantitative
evaluation, we also examined participants’ exploration behav-
ior by measuring thier eye movements during the experiments.

2.2 Analysis of exploration behavior using eye-tracking data

The analysis of user behavior while using visualization systems
has been performed in several studies [11, 6, 13, 10, 14]. In
these studies, an eye-tracking system is used to record partici-
pants’ eye movements. Eye-tracking data makes it possible to
understand the manner in which participants use the developed
visualization system; additionally, it provides insights into the
participants’ reasoning methods and problem-solving strategies
[1]. Thus, eye-tracking data can be used to improve visualiza-
tion systems by evaluating the usefulness and readability of
visualization technology in terms of visual cognition.

For example, Netzel et al. [14] evaluated four variants of ge-
ographic map annotation: within-image annotation, grid ref-
erence annotation, directional annotation, and miniature an-
notation. Participants were instructed to identify the specified
label within the map as quickly and accurately as possible. As
they performed the task, both eye-tracking data and comple-
tion time were recorded. The results indicated that the within-
image annotation outperformed all other annotation methods.
Additionally, eye-tracking data revealed that the participants
used different task strategies for different geographic map anno-
tations. Burch et al. [6] explored three types of tree diagrams:
a traditional tree layout, orthogonal tree layout, and radial tree
layout. Participants were instructed to identify the least com-
mon ancestor of a given set of marked leaf nodes, considered
a typical hierarchical exploration task. During this task, eye-
tracking data was recorded using an eye-tracker. Additionally,
the accuracy and completion time of the task was recorded as
well. From the eye-tracking data, it can be seen that the ex-
ploration strategies differed for each method. The participants
frequently cross-checked their solutions and required more time
to complete the task when using the radial layout than the
other layouts.

In this study, we measured participants’ eye movements dur-
ing a task to reveal their exploration behaviors. This data elu-
cidated the manner in which the participants searched the GIB
graph before reaching an answer, as well as the focus of their
gaze.

2.3 GIB Layout

The GIB layout is a graph-drawing method designed to visu-
alize the group structure of graphs [21, 7, 16]. In GIB, all
nodes in a group are placed within a box whose size is pro-
portional to the number of nodes. Therefore, using GIB, it is
possible to simultaneously visualize group structure, the rela-
tionship between various groups, and the size of the groups in
the graph. In this study, the GIB layout was selected as the
evaluation target for the following reasons. First, GIB layouts
consist of various visualization elements such as lines, points,
and boxes, and multiple pieces of information can thus be ob-
tained from the layout. Second, GIB layouts are suitable for
performing eye-tracking analyses based on an area of interest
(AOI). Specifically, in GIB layouts, a graph diagram is divided
into boxes which can be regarded as AOIs. There are several
GIB layouts, including FD-GIB and TR-GIB, which were used
in this study and are described below. Fig. 1 presents examples
of these layouts.

FD-GIB Force-directed GIB (FD-GIB) was developed by
Chaturvedi et al. [7]. This method uses a force-directed
layout to arrange each box according to its attraction to
the center and the repulsion between boxes. Because this
layout can create overlaps, we used the PRISM method
to decrease any overlaps [9]. Although this layout is suit-
able for depicting the topology of an entire network, it
may present challenges in understanding the relationships
that exist in a single group, as each box can only occupy
a small area. However, the aspect ratio of each box can
be made constant in this layout; therefore, users should
be able to easily compare box sizes.

TR-GIB Another layout was proposed by Onoue et al. [16]:
the tree-reordered GIB (TR-GIB). This layout is based
on the squarified treemap GIB (ST-GIB) developed by
Rodrigues et al. [21], which is coordinated by squarified
treemaps proposed by Bruls et al. [5]. The ST-GIB layout
does not consider the relationship between nodes when the
boxes are arranged; therefore, it includes edge crossing,
tending to hamper users’ understanding of the depicted
networks [4, 17, 18, 19]. TR-GIB is optimized so that the
lengths of all edges of the ST-GIB are minimized. More
specifically, the TR-GIB layout minimizes the weighted
sum of the distances between groups by reordering the
sibling nodes in the ST-GIB layout. Because the TR-
GIB layout is optimized to minimize the distance between
groups, it has fewer edge crossings than in the ST-GIB.
Thus, this layout has the advantage of ST-GIB’s favorable
aspect ratio and effective screen use as well as the property
of fewer edge crossings.

To evaluate GIB layouts, Chaturvedi et al. performed com-
putational experiments on the following three layouts: ST-GIB,
FD-GIB, and croissant-and-doughnut GIB (CD-GIB); here the
latter layout improves ST-GIB by considering the link informa-
tion connecting a node to another node belonging to a different
group [7]. Onoue et al. demonstrated that TR-GIB is advan-
tageous over ST-GIB in terms of computational measures [16].
In our previous study, we evaluated the four above-mentioned
layouts (ST-GIB, CD-GIB, FD-GIB, TR-GIB) from the per-
spective of human cognition through user experiments in which
eye-tracking data was collected [3]. The optimal layouts were
FD-GIB and TR-GIB, both of which offered various advantages
and disadvantages. FD-GIB was effective in determining the
number of links and abstract information, while TR-GIB was
effective in representing more concrete relationships, such as
links between specific nodes. The eye-tracking data provided
evidence to support these results; additionally, it provided in-
sights to help reveal the features in the GIB layout that affected
task performance.



(b) TR-GIB(a) FD-GIB

Fig. 1. Examples of group-in-a-box (GIB) layouts: (a) force-directed GIB (FD-GIB), (b) tree-reordered GIB (TR-GIB).

We conducted an additional controlled laboratory experi-
ment to examine multiple exploration behaviors in a task [23].
In the experiment, we fixed the number of groups to 7 and 14
and investigated which visualization factors affect the task per-
formance. The results indicated that the exploration behavior
was determined by whether the correct answer was the box
with the largest area, a visualization factor that considerably
affects the correct answer rate.

From the results of these experiments, we were ale to identify
the tradeoffs in GIB layouts and the factors that determined
performance in GIB representations. However, the extent to
which accuracy was affected by whether the answer was the
box with the largest area remained an open question. Addi-
tionally, modeling the task of estimating internal edges in GIB
was also unclear. By designing and conducting controlled lab-
oratory experiments to address these questions, we were not
only able to propose effective usage of GIB based on human
cognitive abilities, but we were also able to provide a guideline
for sophisticated visualization usage.

3 Experiment

In the task of identifying the box with the largest number of
internal edges in a group, previous experiments [3, 23] deter-
mined that the size of the box as well as the difference in the
internal edge affected the solution. In other words, in visu-
alization systems that present multiple visual elements, other
visualization elements may affect performance when extract-
ing information from a graph. The purpose of this study is
to quantify this effect and to model task performance in an
effort to understand human performance characteristics using
the GIB layout. Additionally, this study aims to obtain further
knowledge for determining optimal visualization usage.

3.1 Task

Previous experimental results [3, 23] suggest that not only the
number of edges in a group but also the size of the boxes affects
the correct answer rate. To quantify these effects and model
task performance, it is necessary to measure the correct answer
rate for the following three cases;

1. The box size affects the accuracy.

2. The number or density of the edges in the group affects
the accuracy.

3. Both the box size and density of the edges affect the ac-
curacy.

The effects in these three cases can be modeled by designing
an experiment that controls for the visualization factors that
may affect task accuracy. We therefore created the following
three tasks using the GIB layout.

Task 1 Determine which group has the largest area (i.e, max-
imum number of nodes) when only nodes and boxes are
displayed.

Task 2 Determine which group has the largest number of in-
ternal edges when only nodes and edges are displayed.

Task 3 Determine which group has the largest number of in-
ternal edges when nodes, edges, and boxes are displayed.

Fig. 2 presents an example of each task.

(a) Task 1 (c) Task 3(b) Task 2

Fig. 2. Examples of each task. (a) Task 1: Determine which group
has the largest area when only nodes and boxes are displayed. (b) Task
2: Determine which group has the largest number of internal edges
when only nodes and edges are displayed (c) Task 3: Determine which
group has the largest number of internal edges when the original GIB
are displayed.

3.2 Data and layout generation

To implement the task described in Sect. 3.1, data in this ex-
periment was generated by a method different from that used
in previous research [3, 23]. Although the manner of displaying
data differed between the three tasks, to unify the experimen-
tal conditions, the data was generated using the same method
for all tasks. It was necessary to control for the size of the box
in Task 1 and the size of the box and the number of edges for
Tasks 2 and 3. To control for these conditions, each element of
the GIB layout was set as follows.

3.2.1 Number of groups

Because the purpose of the experiment was not to observe
changes in task performance due to differences in group size,
the number of groups was fixed at seven.



(a-1) Edge Ratio = A1:A2 = 1:0.98
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(a-2) Edge Ratio = A1:A2 = 1:0.91

A1 A2

(a) FD-GIB (b) TR-GIB
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(b-2) Edge Ratio = A1:A2 = 1:0.91
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Fig. 3. Example of the edge ratio of a box that is the correct answer
candidate for each GIB layout

3.2.2 Number of nodes

In this task, the size of the box to be controlled was dependent
on the number of nodes in the group. In a series of tasks, the
size of a box is considered to affect task performance. There-
fore, we created two cases; one in which the sizes of the two
boxes that are the correct answer candidates were easy to com-
pare, and one in which they were difficult to compare. However,
the difference in the side lengths of the boxes was not identi-
cal in TR-GIB and FD-GIB even when the number of nodes
in the two correct answer candidates was the same. The rea-
son for that is TR-GIB has higher space utilization efficiency.
Additionally, if the differences in the lengths of the sides of
the two boxes were equal for TR-GIB and FD-GIB, it would
be easier to recognize the differences in FD-GIB, having lower
space utilization efficiency than TR-GIB. Therefore, the ratio
of the sides of the two correct answer candidates were aligned
in both layouts. The edge ratio (Er: Edge ratio) of the two
correct answer candidates was set to 1 : 0.98 and 1 : 0.91. In
TR-GIB, due to layout characteristics, two rectangular correct
answer candidates were arranged vertically and had a common
long side; thus, the side ratio was applied to the remaining short
sides. In FD-GIB, the two correct answer candidates were both
square; thus, the above-mentioned side ratio was applied to all
sides.

The total number of nodes was 185, which is the average
of the total number of nodes used in the previous study [23].
Let N1 and N2 be the number of nodes in the two candidate
boxes, and let N3–N7 be the number of nodes in the remaining
boxes. The number of nodes is set as follows;

(N1, N2) =


(55, 54) (TR-GIB, Er = 1 : 0.98)

(55, 50) (TR-GIB, Er = 1 : 0.91)

(55, 53) (FD-GIB, Er = 1 : 0.98)

(55, 46) (FD-GIB, Er = 1 : 0.91)

(1)

4 ≤ N3, ..., N7 ≤ N2− 10 (2)

Fig. 3 presents an example of the edge ratio of the correct
answer candidates with N1 and N2 nodes.

To prevent N3–N7 from being the correct answer candi-
dates, the ratio to the side of the second largest box was set to
be smaller than 0.91 and was randomly generated.

3.2.3 Number of intergroup edges and internal edges

In the task of selecting a box with the largest number of in-
ternal edges, when the number of internal edges was large,
participants could simply select the higher density box instead
of counting and selecting the number of edges. Here, let C be
the area of a circular region surrounding all nodes in a certain
group (expressed in pixel2), and let L be the number of edges in
the group. The density D of the internal edges is then defined
as follows:

D = L/C (3)

Because the density of the internal edges directly affects task
performance, the task difficulty level was controlled for not by
adjusting the difference in the number of internal edges, but by
adjusting the internal edge density difference. Regarding the
two correct answer candidates, let L1 and L2 be the number
of edges in the group with N1 and N2 nodes, respectively. Let
C1 and C2 be the area of the circles that enclose all nodes in
these groups, respectively. The density difference ∆D of the
internal edge is expressed as follows:

∆D = L1/C1− L2/C2 (4)

With reference to data from previous research, we set the range
of the difference in internal density as follows:

− 9× 10−4 ≤ ∆D ≤ 9× 10−4 (5)

Here we consider the cases in which ∆D is positive or nega-
tive. Positive ∆D signifies that the box with the largest area
has the largest number of internal edges. Similarly, negative
∆D signifies that the box with the second largest area has the
largest number of edges.

In this layout, the circle enclosing all nodes in each group is
determined by the number of nodes, internal edges, and inter-
group edges. Thus, the circular area cannot be determined
prior to generating the visualization. Of the data generated
based on the fixed number of nodes and variable number of
edges, this experiment used data satisfying the following con-
ditions:

If L1 is the largest number of internal edges

∆D ≈



1× 10−4

3× 10−4

5× 10−4

7× 10−4

9× 10−4

(6)

L1 > L2 > L3, · · · , L7 ≥ 1 (7)

L1/C1 > L2/C2 > L3/C3, · · · , L7/C7 (8)

|L′1/C1− L′2/C2| ≈ 1× 10−4 (9)

20 ≥ L′1, L′2 > L′3, · · · , L′7 ≥ 1 (10)

If L2 is the largest number of internal edges

∆D ≈



−1× 10−4

−3× 10−4

−5× 10−4

−7× 10−4

−9× 10−4

(11)

L2 > L1 > L3, · · · , L7 ≥ 1 (12)

L2/C2 > L1/C1 > L3/C3, · · · , L7/C7 (13)

|L′1/C1− L′2/C2| ≈ 1× 10−4 (14)

20 ≥ L′1, L′2 > L′3, · · · , L′7 ≥ 1 (15)

Here, let C1–C7 be the area of the circles surrounding all the
nodes belonging to groups with N1–N7 nodes. Let the number
of internal edges in each group be L1–L7, and the number of
intergroup edges be L′1 to L′7. The number of edges between
groups was set to a maximum of 20. This was to avoid a
situation in which there were too many edges between groups,
reducing the overall readability. When the number of edges
between groups is large in the GIB layout, a method called
edge bundling is often used to bundle the edges to improve
readability. However, in this experiment, a certain degree of
visibility was required, as it was not our aim to quantify the
efficacy of edge bundling in GIB. Fig. 4 presents an example
of the density difference of the correct answer candidates with
internal edge numbers L1 and L2 in FD-GIB.
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Fig. 4. Density difference of the correct answer candidates in the ratio
0.91 in FD-GIB

3.2.4 Data amounts

We constructed 20 types of data created from the combination
of the visualization method (TR-GIB, FD-GIB), edge ratio (1 :
0.98, 1 : 0.91), and difference in density of edges within groups
(−9×10−4～9×10−4). In Task 1, one dataset was generated for
each type, while in Task 2 and 3, five datasets were generated
for each type. Thus, 440 datasets (=20 types × (1 dataset +
5 datasets + 5 datasets)) were generated in total for the entire
task.

3.2.5 Layout

The generated data was visualized using the TR-GIB and FD-
GIB methods. Further, the GIB layouts could only determine
the arrangement of the boxes; therefore, it was necessary to
determine the node coordinates in each box. Of the layouts
available for arranging nodes in a box, we used the force lay-
out, as it is known to reduce edge crossing and increase read-
ability [12]. In this method, nodes are arranged according to
the repulsion and the attraction between them, and the grav-
ity level from the center of the group to which they belong.
The color scheme of each group was set randomly. Although
different colors produce different psychological effects and may
affect task performance, this effect was eliminated in our study
by randomly arranging the colors. A sample GIB layout can
be output at our open-access website [2].

3.3 Study design

In this experiment, Task 1 involved the ratio of two types of
sides and had a total of 20 trials (ratio of two types of sides
× 10 trials). Task 2 and 3 involved the ratio of two sides and
the difference in density of 10 types, resulting in 100 trials
in total (ratio of two types of sides × difference of 10 types
of density × 5 trials). Because Task 2 did not display a box
when visualizing data, we could not verify the ratio of sides
visually; however, to equate the conditions in Tasks 2 and 3,
the data was generated identically. There were two layouts,
resulting in a total of 440 trials (2 × (20 trials + 100 trials +
100 trials)). In Task 1, 40 trials were divided into two sets,
where one set had 20 trials. In Tasks 2 and 3, 100 trials were
divided into eight sets, where one set had 25 trials. The same
type of GIB layout was displayed in each set. The order of
the sets and trials in the set was randomized to eliminate any
possible effects resulting from trial order. The participants
took a short break of approximately 30 seconds following each
set, and a long break of up to 5 minutes between each task and

Tobii Pro X3-120Chinrest

Fig. 5. Experimental environment. The eye movement was recorded
using an eye tracker attached to the bottom of the monitor.
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Fig. 6. Illustration of experimental paradigm

between the fourth and fifth sets during Tasks 2 and 3. The
eye tracking system was re-calibrated after every break.

3.4 Experimental setup

The experiment was conducted in our laboratory, which was
illuminated with artificial lighting. The task was displayed on
a 24-inch monitor, with a resolution of 1, 920 × 1, 080 pixels,
and eye movements were recorded using the Tobii Pro X3-120
eye-tracking system. Additionally, we used a chin rest to pre-
vent participants’ head from moving during the experiment
and leading to noise in the eye-tracking data. Fig. 5 presents
an overview of the experimental setup.

3.5 Study procedure

The experiment took 1.5–2 hours, including preparation, ex-
planation, and rest. First, participants were provided an ex-
planation of eye-tracking and each GIB layout. Then, they sat
65 cm from the monitor and were given instructions on the task
while performing a tutorial prior to each task. They trained
sufficiently to avoid the influence of habituation in the actual
experiment. The experiment was performed as described in
Sect. 3.3. The participants were instructed to perform each
task correctly, and no time limit was set for each task so that
the participants had enough time to select the correct answer.
If the participants focused on answering quickly, their false
answer rate would likely be high and chaotic eye movements
would be obtained, which was not intended in this experiment.
Participants continued to the following task after clicking on
an answer and pressing the enter key. Fig. 6 illustrated the
experimental paradigm.

3.6 Participants

The participants were 27 healthy adults with normal or cor-
rected normal vision; 21 were male and 6 were female. The
participants were 21–33 years old with an average age of 24
years. Three participants were familiar with GIB, four par-
ticipants were familiar with visualization, while the remaining
participants had no prior knowledge of GIB. The latter subjects
had not been involved in visualization studies but had expe-
rience reading information from figures and tables. Informed
consent was obtained in advance from all participants.
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4 Results

4.1 Relationship between box size and accuracy

In Task 1, in which only nodes and boxes were displayed, partic-
ipants performed a task to answer which group had the largest
area. Fig. 7 presents the results of this task. For both GIB
layouts, the accuracy was high when the side ratio was small
(i.e., when the difference between sides was large). No signifi-
cant difference was detected between FD-GIB and TR-GIB by
the Wilcoxon signed rank test.

4.2 Relationship between edge density in group and accuracy

In Task 2, in which the nodes and edges were displayed, partic-
ipants performed a task to answer which group had the largest
number of internal edges. The results of this task is shown in
Fig. 8.

For both layouts, the accuracy increased as the density dif-
ference increased. The results were modeled by performing
fitting (i.e., probit regression analysis) on the results of Task
2 to the cumulative normal distribution function often used
in psychophysics. The principle of probit regression analysis
is described below. First, the cumulative normal distribution
function can be expressed as follows:

y ≈ n(x) =
1√
2πσ

∫ x

−∞
exp

{
− (t− µ)2

2σ2

}
dt (16)

Table 1. Results of goodness-of-fit test for the modeling in task 3.
The null hypothesis (this model formula fits the measured value) is not
rejected under the condition of p > 0.05.

GIB layout FD-GIB TR-GIB
Edge Ratio 0.98 0.91 0.98 0.91

Difference of Density ∆D < 0 ∆D > 0 ∆D < 0 ∆D > 0 ∆D < 0 ∆D > 0 ∆D < 0 ∆D > 0
p-value 0.479 0.182 0.222 0.119 2.57× 10−4 5.99× 10−10 9.18× 10−2 1.65× 10−3

In this experiment, it was necessary to determine the unknown
parameters µ and σ that best fit the actual data, where x is
the density difference of the internal edge and y is the accuracy.
The cumulative normal distribution function is a monotonically
increasing function, which has an inverse function. If the in-
verse function is n−1

std, the relationship between n and n−1
std can

be expressed as follows:

n(x) =
1√
2πσ

∫ x

−∞
exp

{
− (t− µ)2

2σ2

}
dt (17)

=
1√
2πσ

∫ x− µ

σ

−∞
exp

{
−u2

2

}
σdu (18)(

∵ u =
t− µ

σ

)
= nstd

(x− µ

σ

)
(19)

(20)

Here, the value of the density difference is x = [x1, x2, · · · , xN ],
and the accuracy is y = [y1, y2, · · · , yN ]. Fitting the relation-
ship between x and y to the normal cumulative distribution
function is expressed as follows:

y1 ≈ n (x1) = nstd

(x1 − µ

σ

)
. (21)

n−1
std (y1) ≈

x1 − µ

σ
(22)

Here, n−1
std is called a z-value, a value obtained from a numerical

table. Performing the same procedure for all data results in the
following:

n−1
std (y1) ≈ x1 − µ

σ

n−1
std (y2) ≈ x2 − µ

σ
...

n−1
std (yN ) ≈ xN − µ

σ
.

Where n−1
std (y) is w, 1/σ is a, −µ/ sigma is b, then w = ax+b,

and µ, σ can be obtained by simple linear regression. Modeling
the data obtained in Task 2 using this method makes it possible
to plot a regression curve as a solid line in Fig. 8.

4.3 Relationship between box size, density of edges in group
and accuracy

In Task 3, in which all elements of the GIB layout –nodes,
edges, and boxes– were displayed, participants performed a
task to identify which group had the largest number of edges.
Fig. 9 presents the results of Task 3. For both GIB layouts, a
larger absolute value of the density difference led to a higher
percentage of correct answers. The regression curve was ob-
tained in Task 3 as a solid line in Fig. 9. From the goodness-
of-fit test, the null hypothesis cannot be rejected except for
a difference in density of > 0, where the ratio of the sides in
TR-GIB is 0.98 and 0.91.
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Fig. 9. Results of modeling the relationship between density difference
and accuracy in (a) FD-GIB and (b) TR-GIB in task 3

5 Discussion

5.1 Relationship between box size and accuracy

In Task 3, in both GIB layouts, the smaller the ratio of the box
sides in the range of density difference > 0 led to the higher
accuracy. On the other hand, in the range of density difference
< 0, accuracy is lower as the box side ratio is smaller. Ta-
ble 2 shows the result of testing whether there is a difference
in accuracy between conditions of different edge ratio in Task
3.

As shown in Fig. 9 and Table 2, when the edge ratio Er =
0.91, accuracy tends to be significantly increased in the range of
the density difference > 0, while accuracy tends to be decreased
in the range of the density difference < 0. Therefore, not only
the density difference but also the difference in box size is one
of the factors in determining the accuracy. This is a natural
result because, under the same density difference, the larger
difference in box size (Er = 0.91) led to the larger difference in
the number of internal edges, results in the higher accuracy on
task.

On the other hand, since the correct box is the second largest
box in the range of density difference < 0, the density informa-
tion and the size difference information contradict each other
in this range, indicating that accuracy got lower than that of
the density difference > 0.

Table 2. The result of testing whether there is a significant difference
in accuracy by the edge ratio for each density difference of each GIB
layout in Task 3 by the Wilcoxon sign rank test. The highlighted part
in red is the data showing significant difference (p < 0.05).

Difference of Density −9 × 10−4 −7 × 10−4 −5 × 10−4 −3 × 10−4 −1 × 10−4

FD-GIB 0.0709 0.265 2.05× 10−4 0.497 6.90× 10−4

TR-GIB 5.57× 10−5 0.194 9.46× 10−3 4.88× 10−4 0.547

1 × 10−4 3 × 10−4 5 × 10−4 7 × 10−4 9 × 10−4

9.05× 10−3 1.57× 10−5 0.146 1.10× 10−3 6.10× 10−5

5.50× 10−5 1.24× 10−4 0.508 1.00 1.00

Table 3. The result of Wilcoxon’s signed-rank test for the difference in
accuracy between Task 2 and 3 under each condition. The red high-
lighted area shows where the accuracy in Task 3 is significantly larger
than that in Task 2 (p < 0.05), and the blue highlighted area is where
the accuracy in Task 3 is significantly smaller.

GIB layout FDGIB TRGIB
Edge Ratio 0.98 0.91 0.98 0.91

−9 × 10−4 8.94× 10−4 9.21× 10−6 0.0625 5.92× 10−4

−7 × 10−4 0.0881 7.70× 10−3 0.0189 0.245
−5 × 10−4 0.0182 1.20× 10−5 0.961 1.17× 10−3

−3 × 10−4 3.89× 10−3 0.0756 0.0121 3.67× 10−4

−1 × 10−4 0.942 2.71× 10−4 0.521 0.167
1 × 10−4 6.50× 10−4 1.12× 10−5 2.83× 10−4 8.17× 10−3

3 × 10−4 0.126 1.17× 10−5 0.285 1.95× 10−4

5 × 10−4 2.54× 10−5 1.73× 10−5 1.01× 10−5 1.28× 10−4

7 × 10−4 0.524 8.15× 10−5 1.75× 10−5 1.67× 10−5

Difference
of

Density

9 × 10−4 0.645 6.36× 10−6 0.0313 0.0313

5.2 Effects of box on accuracy

In Task 2 and Task 3, there was a difference in the display
of the box. Therefore, comparing the results of Task 2 and
Task 3 makes it possible to confirm the effect of the presence
or absence of a box. We hypothesized that the effect of the box
is as follows.

• When the edge ratio in Task 3 is 0.98, that is, there is
almost no difference in edge ratio, the effect of a box ex-
plicitly representing the group size would be small. On
the other hand, when the edge ratio is 0.91, that is, the
difference between the edge ratio is large, the effect of a
box would be large.

For each GIB layout, Fig. 10 shows the result of comparing
the accuracy of Task 2 and Task 3. In addition, the results
of testing the statistical difference between accuracy in Task 2
and 3 using the Wilcoxon signed-rank test are shown in 3.

When the edge ratio of the FD-GIB was 0.98, a significant
difference is confirmed in the density difference 1 × 10−4 and
5× 10−4 in the density difference > 0, showing that the accu-
racy of Task 3 was higher than that of Task 2. On the other
hand, in the density difference −9×10−4, −5×10−4, −3×10−4,
significant differences were confirmed, showing that the accu-
racy of Task 3 was lower than that of Task 2.

When the edge ratio of FD-GIB was 0.91, significant differ-
ence was found except for the density difference −3×10−4. At
density differences showing significance, the accuracy of Task
3 was higher than Task 2.

In addition, when the edge ratio of TR-GIB was 0.98, the
significant density difference between Task 2 and 3 were con-
firmed at −7× 10−4, −3× 10−4, 1× 10−4, 5× 10−4, 7× 10−4,
and 9× 10−4. The accuracy of Task 3 was higher than Task 2
in the density difference 5× 10−4, 7× 10−4, 9× 10−4.

In the density difference −7 × 10−4, −3 × 10−4, the accu-
racy in Task 3 is higher than that in Task 2, and the density
difference 1 × 10−4 had a lower accuracy than Task 2. When
the side ratio of TR-GIB was 0.91, significant differences were
found except for the density difference−7×10−4 and−1×10−4.
At density differences showing significance, the accuracy was
higher than task 2.

From this result, when the edge ratio was 0.91, the differ-
ence between Task 2 and Task 3 was generally large, indicating
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Fig. 10. Relationship between density difference and accuracy in (a)
FD-GIB, (b) TR-GIB in Task 2 and 3

that an effect of box would increase the accuracy. The pres-
ence of the box that explicitly indicates the group size could
allow information on the group size to be used to estimate the
difference between the internal edges.

The same effect was partially seen when the edge ratio is
0.98, however, as shown in the blue area of Table 3, the effect
of lowering the accuracy was also confirmed by the presence of a
box. The effect of lowering the accuracy was observed in which
the accuracy was extremely low for both FD-GIB and TR-
GIB. Displaying the box explicitly could be an adverse effect
in these cases, leads to misjudging the number of internal edges.
Thus, the presence or absence of box can cause a fluctuation
in accuracy either positively or negatively.

5.3 Comparison of accuracy by two GIB layouts

We examined whether there was a significant difference in accu-
racy between FD-GIB and TR-GIB. Fig. 11 presents the result
of comparing the accuracy of each GIB layout in Task 3.

4 shows the result of testing the significant difference of ac-
curacy of two GIB layouts by the Wilcoxon’s signed-rank test
in each density difference.

In the range of density difference < 0, TR-GIB had a sig-
nificantly higher accuracy than FD-GIB at either edge ratio
except for two cases (Er=0.98, ∆D=−1 × 10−4 and Er=0.91,
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Fig. 11. Accuracy comparison of FD-GIB and TR-GIB in task 3

Table 4. The result of testing whether or not there is a significant differ-
ence in accuracy of two GIB layouts in Task 3 by Wilcoxon’s signed-rank
test. The red highlighted area shows significant difference (p < 0.05).

Difference of Density −9 × 10−4 −7 × 10−4 −5 × 10−4 −3 × 10−4 −1 × 10−4

Edge Ratio
0.98 9.56× 10−6 8.22× 10−4 2.99× 10−4 1.37× 10−5 0.639
0.91 0.0128 2.51× 10−3 1.75× 10−4 0.740 3.80× 10−3

1 × 10−4 3 × 10−4 5 × 10−4 7 × 10−4 9 × 10−4

1.12× 10−4 9.62× 10−3 0.0352 8.21× 10−4 6.10× 10−5

0.0357 1.00 1.00 0.289 1.00

∆D=−3 × 10−4). On the other hand, in the range of density
difference > 0, when the edge ratio was 0.98 and the density
difference was 1× 10−4, FD-GIB showed higher accuracy than
TR-GIB. However, other than that, TR-GIB showed higher
accuracy. Also, when the edge ratio was 0.91, a significant
difference is confirmed only when the density difference was
1× 10−4, and the accuracy in FD-GIB is high.

TR-GIB tended to have a higher accuracy rate as a whole,
but this is because the paper utilization efficiency was higher
in TR-GIB and the area of the box is larger than in FD-GIB,
leads to improved visibility. Moreover, in the previous study
[3], the correct answer rate of FD-GIB was relatively high, and
this study [23] showed that the significant difference in accuracy
between the GIB layouts could not be confirmed. The reason
for inconsistency is why the difference in density, the area of
the box, and the number of boxes used in these experiments
are not the same as the current experiment.

5.4 Analysis of eye-tracking data

In this experiment, eye-tracking data was acquired from the
subject performing the task. We conducted an AOI-based anal-
ysis on eye-tracking data to investigate in detail from the view-
point of human exploration behavior why the accuracy would
change depending on the presence or absence of a box.

It is expected that the size of the graph in the box could be
estimated efficiently by displaying the box. If such informa-
tion is actively used by participants, we hypothesized that it
may change the fixation duration inside the graph and fixation
duration at the periphery of the box outside the graph depend-
ing on the presence or absence of the box. Therefore, in this
analysis, only eye-tracking data related to two correct answer
candidates was analyzed. AOIs were determined as Fig. 12.

For each box we define an AOI called ”in” and ”out”. ”In”
is a circle area that encloses all the nodes belonging to the
group, and ”out” is the area slightly larger area (13.5 pixels
margin) than the box excluding ”in” area. Although the range
of“ out”is slightly larger than that of the box, when the side
lengths of the box are compared in Task 1, the gaze positions
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Fig. 12. Definition of AOI. (a) FD-GIB, (b) TR-GIB. The area of the
circle surrounding all the nodes belonging to a certain group is defined
as ”in” and the area slightly larger than the box excluding ”in” is defined
as ”out”.

are distributed at the periphery of the box. To count those
peripheral distribution of gaze as a fixation duration of ”out”,
we enlarge the AOI of ”out”.

In this experiment, eye-tracking data were analyzed to find
out which AOIs the subjects focused. When subjects compare
box sizes, the fixation duration for the ”out” region could in-
creases, and when the internal edges are compared, an increase
in fixation duration for the ”in” region could increase.

Of the 27 subjects, six subjects were excluded from this anal-
ysis because their datasets were noisy. In each trial of each task,
we calculated the ratio ”in” against the time when the subject
saw ”in” and ”out” for the time from 100 ms after the stimulus
onset to the end of the stimulus. The average value of the ratio
of AOIs was shown in Fig. 13.

Compared to Tasks 2 and 3 in both GIB layouts, the per-
centage of fixation duration to see ”in” in Task 1 was lower,
indicating that the subjects pay attention to the periphery of
a box when comparing the box sizes. The ratio of fixation du-
ration looking at ”in” in Tasks 2 and 3 was high, we tended to
focus on the node link diagram in the box itself. No significant
difference between the fixation duration of task 2 and task 3
was confirmed in either GIB layout.

Since Task 3 displays a box, we expected to see a lower
percentage of fixation duration at“ in” compared to Task
2. However, from the results of tasks 2 and 3, it can be seen
that the subject is focusing on the ”in” region regardless of the
presence or absence of the box. The subjects are not focus-
ing on the periphery of the box, but has a strategy of focusing
on the node-link diagram. However, the box information ob-
tained by the peripheral vision could influenced the accuracy
unintentionally.

When extracting information from a visualization diagram
composed of multiple visualization elements such as GIB lay-
out, even if the user is paying attention to the most important
element for the task, other visualization elements are also came
into view unintentionally during the exploration. The results of
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Fig. 13. The ratio of fixation durations of“ in” to that of“ in”and
“ out” in (a) FD-GIB layout and (b) TR-GIB layout in each task.

this study suggest that these unintended visualization factors
may influence the correct answer rate. Therefore, the designer
of visualization must design the visualization by carefully con-
sidering the characteristics of human visual cognition. To avoid
the influence of unintended visualization elements on the GIB
layout, one option is to change the way to visualize data inter-
actively according to users’needs. Taking example of this task,
an interactive visualization that directly encodes the number
of internal edges could be effective for decrease in misjudges.

6 Conclusion

We measured the performance and eye movements of partic-
ipants performing the task of identifying the group with the
largest internal edges to investigate the effect of visualization el-
ements on task performance. Twenty-seven subjects performed
the task of determining which group has the largest number
of internal edges when different combination of visualization
elements are displayed. Eye-tracking results revealed that sub-
jects performed tasks focusing on the graphs in the group even
when the box was displayed. Nevertheless, the presence and
absence of boxes caused fluctuations in accuracy. The GIB
layout targeted in this study is an example of a complex vi-
sualization. By designing tasks for visualizations other than
the GIB layout, it is possible to quantify human behaviors and
performances in various cases, leads to obtain useful knowledge
for designing visualization techniques.
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